Seeded Failure Testing and Analysis of an Electro-Mechanical Actuator

Lockheed Martin Aeronautics
Parker Aerospace
Dynamic Controls, Inc.

David S. Bodden
Bill Schley
Gavin Jenney
F35 Integrated Prognostics and Health Management

Air Vehicle On-Board Health Assessment

- **PHM Area Managers**
 - ICAWS Manager
 - Hosted in VMC
- **PHM Managers**
 - Propulsion
 - VS
 - FCS/Utility Subsystems
 - Structures
- **Mission Systems**
 - MS Subsys

Health Management, Reporting & Recording

- **AVPHM**
 - Hosted in ICP
- **NVM**
- **Crash Recorder**
- **PVI**
- **Mission Critical**
- **PHM Data**
- **AMD/PMD**
- **In-Flight & Maintenance Data Link**
- **PMA**
- **Maintenance Interface Panel**

Autonomic Logistics & Off-Board PHM

- **Results In**:
 - Decision Support
 - Troubleshooting and Repair
 - Condition-Based Maintenance
 - Efficient Logistics

Methods Used:
- Sensor Fusion
- Model-Based Reasoning
- Tailored Algorithms
- Systems Specific Logic / Rules
- Feature Extraction

Provides:
- AV-Level Info Management
- Intelligent FI
- Prognostics/Trends
- Auto. Logistics Enabling/Interface

AVPHM

ALIS
- Automated Pilot / Maint. Debrief
- Off-Board Prognostics
- Intelligent Help Environment
- Store / Distribute PHM Information

Database
Technical Program

Objectives

• Develop Competency in Seeded Failure Testing
• Develop Competency in Failure Prognosis

Technical Approach

• Utilize Multiple Actuators – Statistical Significance
 ✓ Parker ½ HP EMA Selected
• Dynamic Controls, Inc. (DCI) Selected to do Testing
• Examine FMECA, Select Components for Failure Testing
• Identify Reliable Failure Pre-cursors
 ✓ Minimal Sensors
Electro-Mechanical Actuator Characteristics

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty</th>
<th>Failure Rate by Assembly (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballscrew Assembly</td>
<td>1</td>
<td>16.20%</td>
</tr>
<tr>
<td>Gearbox Assembly</td>
<td>1</td>
<td>8.30%</td>
</tr>
<tr>
<td>Motor Assembly</td>
<td>1</td>
<td>39.70%</td>
</tr>
<tr>
<td>Housing Assembly</td>
<td>1</td>
<td>1.80%</td>
</tr>
<tr>
<td>Position Potentiometer A</td>
<td>1</td>
<td>34.00%</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>

- Actuator Pin-to-Pin Length: 12,000 inches (fully extended)
- Actuator Stroke: ± 0.875 inches
- Actuator Performance:
 - 2.0 in/sec @ 1620 lbs. Load
 - 3.7 in/sec @ 214 lbs. Load
- Bandwidth: 6 Hz @ -90 Deg
- Stall Load: 2400 lbs. @ 65 A Current limit

Pinion to Cluster Gear: 3 to 1
Cluster Gear to Output Gear: 3.125 to 1
Ball Screw to Ram (rev/in): 5 to 1

Bandwidth: 6 Hz @ -90 Deg
Selected Test Components

<table>
<thead>
<tr>
<th>Description</th>
<th>Failure Rate (X10-6/Hr)</th>
<th>Temp Factor</th>
<th>Applic. Factor</th>
<th>Qty</th>
<th>Total Failure Rate Contribution (x10-6/HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball Screw Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ball Screw</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thrust Bearing</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Gearbox Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cluster Gear Bearing</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Output Bearing</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Motor Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Bearing</td>
<td>1.15</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Components That Will be Tested to Failure
EMA Components Tested

- Motor
- Pinion
- Ballscrew Assembly
- Output Rod
- Motor
- Output Gear
- Cluster Gear
- Gear Pin
- Bearings
- Thrust Bearings (both ends)
- Thrust Bearing
- Motor Bearing
- Motor Bearing
- Motor Bearing
- Motor Bearing
- Ball Screw
- Cluster Bearing
- Output Bearing
- Output Bearing
Test Facility

- Test Rigs Built to Test Six Actuators Simultaneously

Testing at Dynamic Controls, Inc. in Dayton, OH
Failure Definition

- Based on ATP Performance Requirements
- Failure to Meet 90% of a Performance Requirement
 Deemed an Actuator Failure
- Performance Values Used:
 - Minimum actuator rate at specified load
 - Unloaded frequency response
 - Backlash more than specified end-of-life value
- Actuators run until either short-stroke (stalled into spring load) or a motor over-temperature occurred.
Failure Seeding

- **Objective** - Wearout Components to Failure Criteria in Approximately 24 Hours
- **Diamond Lapping Compound Mixed With Lubricant to Accelerate Wear**
 - √ Evaluated Various Grit Sizes and Ratios of Lubricant to Diamond Lapping Compound
 - √ Ball Screw Thrust Bearing Used in Evaluations

<table>
<thead>
<tr>
<th>RunID No. (Actuator S/N)</th>
<th>Failure Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RunID 9/Act1 (54)</td>
<td>19.3</td>
</tr>
<tr>
<td>RunID 9/Act2 (57)</td>
<td>20.9</td>
</tr>
<tr>
<td>RunID 9/Act3 (56)</td>
<td>27.1</td>
</tr>
<tr>
<td>RunID 10/Act1 (54)</td>
<td>15</td>
</tr>
<tr>
<td>RunID 10/Act2 (57)</td>
<td>14.7</td>
</tr>
<tr>
<td>RunID 10/Act3 (56)</td>
<td>23.2</td>
</tr>
</tbody>
</table>

Average Failure time: 19.4
Standard Deviation: 5.0

Development Tests
Failure Pre-Cursors

Consider the EMA From a Control Volume Point of View

\[e = \frac{\text{Power Out}}{\text{Power In}} \]
Sensors

- **Available**
 - √ Ram Position
 - √ Load
 - √ Motor Current Draw
 - √ Motor Position

- **Added**
 - √ Accelerometer - 2 Axis
 - √ Motor Temperature
Test Duty Cycles

Data Snapshots

- Performance Data every 30 minutes
 - Hysteresis
 - Loaded Actuator Rate
 - Frequency Response
 - Accelerometer Data
- Status Data Every 10 Minutes
 - Current
 - Temperature
 - BIT Tests

Red Indicates Loads in Negative Direction
Data Analysis – Actuator Efficiency (Seeded Thrust Bearing)

Raw Data

Filtered Data
(Filtering Allows Failure Prediction and Isolation)
Data Analysis – Frequency Response/Coherence
(Seeded Thrust Bearing)

Coherence

Frequency Response

Coherence Frequencies vs. Time

3dB and 6dB Frequencies vs Time
Data Analysis – PSD Plots
(Seeded Thrust Bearing)

- Accelerometer Data Did Not Provide Useful Information
 - Ram Velocity is Constantly Changing → Gear Frequencies are Constantly Changing
 - Need Accurate Position Information For Velocity Synchronous Averaging

![PSD Plot Image]
Summary Comments

- Lubricant Contamination in the Bearings Provided Reasonable Control of the Time to Failure

- The Thrust Bearings were the Most Detectable Component Failure Since They Directly Reacted the Actuator Axial Loads
 - Output Gear Bearings were Also Detectable
 - Motor Bearing and Cluster Gear Bearing Failures Were Difficult to Detect From an Efficiency Approach – Other Methods Required.

- Defining Failure Criteria Requires Some Thought

- Need to Consider Wear of non-seeded Parts During Testing